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Basic concepts and Definitions Eile @omiEaion

Minor
Topological minor

Edge contraction

Definition (edge contraction)

Let e = xy be an edge of a graph G = (V, E). By G/e we denote
the graph obtained from G by contracting the edge e into a new
vertex Ve , which becomes adjacent to all the former neighbours of
x and of y.

Formally G/e is a graph (V’, E’) with vertex set

V= (V\x,y 1) U {ved

(where ve is the new vertex, i.e. ve ¢ V U E) and edge set:
E={w € E| {x,y}n{v,w}=0}U

{vew|xw € E\{e} oryw € E\{e}}.
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Basic concepts and Definitions

Edge contraction
Minor
Topological minor

Definition (minor)
A graph H is a minor of a graph G if a graph isomorphic to H can
be obtained from a subgraph of G by contracting edges[1].

Definition (another minor definition)

Any graph H that can be produced from G by successive
application of these reductions is called a minor of G:
(a) delete an edge,

(b) contract an edge,

(c) delete an isolated node.
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Minor
Topological minor

Topological minor

Definition (topological minor)

A graph H is called a topological minor of a graph G if a
subdivision of H is isomorphic to a subgraph of G.

every topological minor of a graph is also its (ordinary) minor.

every minor with maximum degree at most 3 of a graph is also its
topological minor.
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Achievements and remarkable works onjecture
cture
conjecture

Interesting works and results

During the past decades graphs minors theory has been developed
so well that one can name the series of papers by Robertson and
Seymour(Graph Minors |...XXIIl) as the most important work in
graph theory. many interesting results and approaches are present,
just to name a few we have the following short list:
e algorithmic aspects: finding O(n3) algorithm for solving
k-Disjoint path problem for fixed k.
@ algorithmic aspects: if we bound tree-width of instances of
many NP-hard problems we can solve those in poly-time.

o Wagner conjecture:For every minor-closed family of graphs
the set of forbidden minors is finite.

@ probabilistic methods: Hajos conjecture disproof and recent
works in proving it for large girth.
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Achievements and remarkable works

Hadwiger conjecture

One of the most important and challenging open problems in
graph theory is Hadwiger's conjecture:

Conjecture (Hadwiger 1943)

for every integer r > 0 and every graph G:
xX(G)>r = G =K,

key facts:

@ this conjecture is true for r < 7 and still open for greater
values.

@ as x(Ktt) =2 A Kt > K: nothing can be said conversely.
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Achievements and remarkable works

r conjecture

Hajos conjecture

The Hajos conjecture is a strengthened version of Hadwiger
conjecture which states:

Conjecture (Hajos)

for every integer r > 0 and every graph G:
X(G) >r = G—:K,

Key facts about this conjecture:
@ Hajos conjecture has been failed in general.
@ conjecture is true for r < 4 and false for r > 7 and cases 5 &
6 are still open.
@ Erdos has showed with probabilistic methods that almost
every graph which is large enough is a counter example for
this conjecture.
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Achievements and remarkable works

Wagner conjecture

Wagner conjecture or as it is known today (Robertson Seymour
theorem) is one of the most important works in graph theory in
past decades. the theorem states:

For every minor-closed family of graphs the set of forbidden minors
is finite.

this theorem generalizes the planar graphs theorem in which we
have Ks &K3 3 as forbidden minors.
a variation of this theorem is for being linklessly embeddable:

A graph is linklessly embeddable if and only if it does not contain
any of the seven graphs in Petersen family as a minor.
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Hajos conjecture
Wagner conjecture

Wagner conjecture

The Petersen family
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Achievements and remarkable works

Wagner conjecture

Wagner conjecture

the following theorem is equivalent to this theorem which states
the set of all finite graphs with minor relation is well quasi ordered

For every infinite sequence Gi, Gy, ... of graphs, there exist distinct
integers i < j such that G; is a minor of G; .

the proof of Wagner's conjecture is one the main result from series
of 23 papers named Graph Minors | to Graph Minors XXIII
published by Robertson and Seymour from 80s to 2004. these
works are considered as one the most important projects in graph
theory.
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Mader works and related results
Extremal results containing Girth

Extremal problems and results Ks.+ Minor free graphs

Mader works

Mader has proved that for every graph H there is a constant Cy
such that every graph G not containing H as a minor satisfies
|E(G)| < Cy|V(G)|, but determining the best possible constant
Cy for a given graph H is a question that has been answered for
very few graphs H.

In fact Mader has shown that:

Theorem (Mader 1967)

There is a function h : N — N such that every graph with average
degree at least h(r) contains K, as a topological minor for every
reN.

The function obtained in this theorem is h(r) = 27(r=1)/2,
as we will see in the following sections this bound is so loose.
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Extremal problems and results

Bounds for K, (topological)minor free graphs

Two bounds for K, (topological)minor free graphs have been found
and these bounds are sharp up to a constant c as a function of r.

Theorem (Bollobas & Thomason and independently Komlos &
Szemeredi)

There exists a ¢ € R such that, for every r € N, every graph G of
average degree d(G) > cr? contains K, as a topological minor.

Theorem (Kostochka 1982; Thomason 1984[2])

There exists a ¢ € R such that, for every r € N, every graph G of
average degree d(G) > cry/log r contains K, as a minor.
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Extremal problems and results

Minor and Girth

There are many results in minors theory which uses girth of a
graph just to name a few we have these two theorems. the
interesting fact is the second theorem shows that only big enough
girth can force certain minors with high minimum degree.

Theorem (Mader 1997)

For every graph H of maximum degree d > 3 there exists an
integer k such that every graph G of minimum degree at least d
and girth at least k contains H as a topological minor.

Theorem (Thomassen 1983)

Given an integer k, every graph G with girth g(G) > 4k — 3 and
d(G) > 3 has a minor H with 6(H) > k.
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Extremal problems and results Ks.+ Minor free graphs

K1+ minor free graphs

It is easy to see that every n-vertex graph with more than

2(t — 1)n edges contains Ky, as a minor (indeed, as a subgraph),
and if t divides n then there is an n-vertex graph with exactly

3(t — 1)n edges with no Ky,¢ minor (the disjoint union of n/t
copies of K; ).

The extremal example for above statement is not connected and
the answer when we restrict ourselves to connected graphs is
different.

Theorem (G. Ding, P. Seymour and T. Johnson, 2001)

Lett >3 and n >t + 2 be integers. If G is an n-vertex connected
graph with no Ki; minor, then |E(G)| < n + 3t(t — 3)
and for all n, t this is best possible.
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Extremal problems and results Ks.+ Minor free graphs

Ks.: minor free graphs

More generally, what is the maximum number of edges in graphs
with no K ; minor when s > 17 If we take a graph each
component of which is a clique of size t, and add s — 1 more
vertices each adjacent to all others, then the resulting n-vertex
graph has no K : minor, and the number of edges is :
(t +2s +3)(n —s +1)/2 +(s — 1)(s — 2)/2.
Key facts:

@ Kostochka and Prince have a proof of this for all sufficiently

large t.
@ it is open for s = 4,5.
o for s > 6 Kostochka and Prince have counterexamples.

@ Kostochka and Prince proved the following:
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Ks.: minor free graphs

Theorem (A. Kostochka and N. Prince[3])

Let s,t be positive integers with t > (240s log, 5)85'°825+1 Then
every graph with average degree at least t 4+ 3s has a Ks; minor,
and there are graphs with average degree at least t + 3s — 5¢/s
that do not have a K+ minor.

Theorem (A. Kostochka[4])

let s and t be positive integers such that

t > to(s) := max 4152 (2405 log,(s))8s 08251 (1)

then every (s+t)-chromatic graph has a kg ,-minor
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K>+ minor free graphs

Theorem (Chudnovsky, Reed and Seymour 2011[5])

Let t > 2, and let G be a graph with n > Q vertices and with no
K>+ minor. Then

E(6)] < 5(¢ + 1)(n — 1)

key facts:
@ Myers had previously proved the theorem for all t > 10%°.

@ the bound is best possible when n - 1 is a multiple of t.

e for n= %t the bound is about %tn but the best known result
is %tn.
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K>+ minor free graphs sketch of proof

Fix t > 2 and suppose the theorem is false for that value of t. So
there is a minimal counterexample, that is, a graph G with the

following properties:
@ G has no K3+ minor.
o [E(G)| > 3(t + 1)(V(G)] - 1).
o |[E(G")| > 3(t + 1)(|V(G’)| — 1) for every graph G’ with no
K>+ minor and |V(G’)| < |[V(G).
Since |[E(G)| > 3(t + 1)(n — 1) it follows that n > t + 2.
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K>+ minor free graphs sketch of proof

The proof is technical and so long but the main idea is outlined
here:

@ It is first shown that G is b-connected, and so t > 6.

@ Then following lemma is prooved which is main argument of
the proof:
Let W C V(G) be connected with |W/| > 2. If t > 11 then
IN(W)| >t +3.

@ Then small t cases are handeled and an edge is found with
large neighbourhood.
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Other approaches

Probabilistic methods and Hajos conjecture

Using the chernoff bound we have the following result:

Theorem (Erdos, Fajtlowicz)

For n sufficiently large there exists graphs with chromatic number

at least @ and no topological minor of Kg_ /5.

@ majority of large graphs are counterexamples.
@ we should have n > 230

@ Hajos conjecture is true for large girth.

Theorem (Kuhn, Osthus 2006)

Let r > 1 be a natural number. Every graph of minimum degree at
least r and girth at least 27 contains a subdivision of K, 1 .
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