Applications of Borsuk-Ulam Theorem

Hossein Hajiabolhassan and Ali Taherkhani

Department of Mathematical Sciences
Shahid Beheshti University, G.C.
Tehran, Iran

Workshop On Topological Combinatorics
Shahid Beheshti University, G.C.
Tehran, Iran

Wednesday, October 21, 2009
Level of Rings
Necklace Theorem
Ham Sandwich Theorem
Team-Splitting
Consensus-Halving Theorem
Level of Rings

- Let R be a ring. The level $s(R)$ of R is the smallest n such that -1 can be written as the sum of n squares in R, that is, $-1 = r_1^2 + \cdots + r_n^2$ for some $r_1, \ldots, r_n \in R$.
- By a theorem of Pfister, the level of every field is either ∞ or a power of 2.
- *Is there a ring of level n for every n?*
- Z.D. Dai, T.Y. Lam, and C.K. Peng have given an affirmative answer to the aforementioned question.
- For a given \mathbb{Z}_2-space X, $\text{ind}_{\mathbb{Z}_2}(X) = s(R_X) - 1$, where R_X is the ring of all \mathbb{Z}_2-maps $X \to \mathbb{C}$, with the \mathbb{Z}_2-action on \mathbb{C} being the complex conjugation.
Let R be a ring. The level $s(R)$ of R is the smallest n such that -1 can be written as the sum of n squares in R, that is, $-1 = r_1^2 + \cdots + r_n^2$ for some $r_1, \ldots, r_n \in R$.

By a theorem of Pfister, the level of every field is either ∞ or a power of 2.

Is there a ring of level n for every n?

Z.D. Dai, T.Y. Lam, and C.K. Peng have given an affirmative answer to the aforementioned question.

For a given \mathbb{Z}_2-space X, $\text{ind}_{\mathbb{Z}_2}(X) = s(R_X) - 1$, where R_X is the ring of all \mathbb{Z}_2-maps $X \to \mathbb{C}$, with the \mathbb{Z}_2-action on \mathbb{C} being the complex conjugation.
Level of Rings

Let R be a ring. The level $s(R)$ of R is the smallest n such that -1 can be written as the sum of n squares in R, that is, $-1 = r_1^2 + \cdots + r_n^2$ for some $r_1, \ldots, r_n \in R$.

By a theorem of Pfister, the level of every field is either ∞ or a power of 2.

Is there a ring of level n for every n?

Z.D. Dai, T.Y. Lam, and C.K. Peng have given an affirmative answer to the aforementioned question.

For a given \mathbb{Z}_2-space X, $ind_{\mathbb{Z}_2}(X) = s(R_X) - 1$, where R_X is the ring of all \mathbb{Z}_2-maps $X \to \mathbb{C}$, with the \mathbb{Z}_2-action on \mathbb{C} being the complex conjugation.
Level of Rings

Let R be a ring. The level $s(R)$ of R is the smallest n such that -1 can be written as the sum of n squares in R, that is, $-1 = r_1^2 + \cdots + r_n^2$ for some $r_1, \ldots, r_n \in R$.

By a theorem of Pfister, the level of every field is either ∞ or a power of 2.

Is there a ring of level n for every n?

Z.D. Dai, T.Y. Lam, and C.K. Peng have given an affirmative answer to the aforementioned question.

For a given \mathbb{Z}_2-space X, $ind_{\mathbb{Z}_2}(X) = s(R_X) - 1$, where R_X is the ring of all \mathbb{Z}_2-maps $X \to \mathbb{C}$, with the \mathbb{Z}_2-action on \mathbb{C} being the complex conjugation.
Level of Rings

Let R be a ring. The level $s(R)$ of R is the smallest n such that -1 can be written as the sum of n squares in R, that is, $-1 = r_1^2 + \cdots + r_n^2$ for some $r_1, \ldots, r_n \in R$.

By a theorem of Pfister, the level of every field is either ∞ or a power of 2.

Is there a ring of level n for every n?

Z.D. Dai, T.Y. Lam, and C.K. Peng have given an affirmative answer to the aforementioned question.

For a given \mathbb{Z}_2-space X, $ind_{\mathbb{Z}_2}(X) = s(R_X) - 1$, where R_X is the ring of all \mathbb{Z}_2-maps $X \to \mathbb{C}$, with the \mathbb{Z}_2-action on \mathbb{C} being the complex conjugation.
Applications of Borsuk-Ulam Theorem

Level of Rings

Set \(R_n := \mathbb{R}[t_1, \ldots, t_n] / <1 + t_1^2 + t_2^2 + \cdots + t_n^2> \). Clearly, \(s(R_n) \leq n \).

Let \(s(R_n) = m < n \). There are \(f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n] \) such that \(p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2 + \cdots + t_n^2) \) is identically \(-1\).

For a point \(x \in S^{n-1} \), define \(q_j(x) \) as the imaginary part of \(f_j(w) \), where \(w \) is the complex vector \((ix_1, ix_2, \ldots, ix_n)\).

\(q_j(-x) = -q_j(x) \), hence, \(q : x \to (q_1(x), q_2(x), \ldots, q_m(x)) \) is an antipodal map \(S^{n-1} \to \mathbb{R}^m \).

We claim that \(q(x) \neq 0 \) for every \(x \in S^{n-1} \), which contradicts the Borsuk-Ulam theorem.

Indeed, we have \(p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1 \). But, this equality could not hold if the imaginary parts of the \(f_j(w) \) were all \(0 \).
Applications of Borsuk-Ulam Theorem

Level of Rings

Set $R_n := \mathbb{R}[t_1, \ldots, t_n] \langle 1 + t_1^2 + t_2^2 + \cdots + t_n^2 \rangle$. Clearly, $s(R_n) \leq n$.

Let $s(R_n) = m < n$. There are $f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n]$ such that $p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2 + \cdots + t_n^2)$ is identically -1.

For a point $x \in S^{n-1}$, define $q_j(x)$ as the imaginary part of $f_j(w)$, where w is the complex vector $(ix_1, ix_2, \ldots, ix_n)$.

$q_j(-x) = -q_j(x)$, hence, $q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x))$ is an antipodal map $S^{n-1} \rightarrow \mathbb{R}^m$.

We claim that $q(x) \neq 0$ for every $x \in S^{n-1}$, which contradicts the Borsuk-Ulam theorem.

Indeed, we have $p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1$. But, this equality could not hold if the imaginary parts of the $f_j(w)$ were all 0.
LEVEL OF RINGS

Set \(R_n := \frac{\mathbb{R}[t_1,\ldots,t_n]}{<1+t_1^2+t_2^2\cdots+t_n^2>} \). Clearly, \(s(R_n) \leq n \).

Let \(s(R_n) = m < n \). There are \(f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1,\ldots,t_n] \) such that \(p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2\cdots+t_n^2) \leq 0 \).

For a point \(x \in S^{n-1} \), define \(q_j(x) \) as the imaginary part of \(f_j(w) \), where \(w \) is the complex vector \((ix_1, ix_2, \ldots, ix_n)\).

\(q_j(-x) = -q_j(x) \), hence, \(q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x)) \) is an antipodal map \(S^{n-1} \rightarrow \mathbb{R}^m \).

We claim that \(q(x) \neq 0 \) for every \(x \in S^{n-1} \), which contradicts the Borsuk-Ulam theorem.

Indeed, we have \(p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1 \). But, this equality could not hold if the imaginary parts of the \(f_j(w) \) were all 0.
Applications of Borsuk-Ulam Theorem

Level of Rings

Set $R_n := \frac{\mathbb{R}[t_1, \ldots, t_n]}{<1+t_1^2+t_2^2+\cdots+t_n^2>}$. Clearly, $s(R_n) \leq n$.

Let $s(R_n) = m < n$. There are $f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n]$ such that $p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2 + \cdots + t_n^2)$ is identically -1.

For a point $x \in S^{n-1}$, define $q_j(x)$ as the imaginary part of $f_j(w)$, where w is the complex vector $(ix_1, ix_2, \ldots, ix_n)$.

$q_j(-x) = -q_j(x)$, hence, $q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x))$ is an antipodal map $S^{n-1} \rightarrow \mathbb{R}^m$.

We claim that $q(x) \neq 0$ for every $x \in S^{n-1}$, which contradicts the Borsuk-Ulam theorem.

Indeed, we have $p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1$. But, this equality could not hold if the imaginary parts of the $f_j(w)$ were all 0.
Level of Rings

- Set \(R_n := \frac{\mathbb{R}[t_1, \ldots, t_n]}{<1+t_1^2+t_2^2+\cdots+t_n^2>} \). Clearly, \(s(R_n) \leq n \).

- Let \(s(R_n) = m < n \). There are \(f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n] \) such that \(p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2 + \cdots + t_n^2) \) is identically \(-1\).

- For a point \(x \in S^{n-1} \), define \(q_j(x) \) as the imaginary part of \(f_j(w) \), where \(w \) is the complex vector \((ix_1, ix_2, \ldots, ix_n)\).

- \(q_j(-x) = -q_j(x) \), hence, \(q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x)) \) is an antipodal map \(S^{n-1} \rightarrow \mathbb{R}^m \).

- We claim that \(q(x) \neq 0 \) for every \(x \in S^{n-1} \), which contradicts the Borsuk-Ulam theorem.

- Indeed, we have \(p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1 \). But, this equality could not hold if the imaginary parts of the \(f_j(w) \) were all \(0 \).
Level of Rings

- Set \(R_n := \frac{\mathbb{R}[t_1, \ldots, t_n]}{<1+t_1^2+t_2^2+\ldots+t_n^2>} \). Clearly, \(s(R_n) \leq n \).

- Let \(s(R_n) = m < n \). There are \(f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n] \) such that \(p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1+t_1^2+t_2^2+\ldots+t_n^2) \) is identically \(-1\).

- For a point \(x \in S^{n-1} \), define \(q_j(x) \) as the imaginary part of \(f_j(w) \), where \(w \) is the complex vector \((ix_1, ix_2, \ldots, ix_n)\).

- \(q_j(-x) = -q_j(x) \), hence, \(q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x)) \) is an antipodal map \(S^{n-1} \rightarrow \mathbb{R}^m \).

- We claim that \(q(x) \neq 0 \) for every \(x \in S^{n-1} \), which contradicts the Borsuk-Ulam theorem.

- Indeed, we have \(p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1 \). But, this equality could not hold if the imaginary parts of the \(f_j(w) \) were all 0.
Level of Rings

- Set \(R_n := \frac{\mathbb{R}[t_1, \ldots, t_n]}{<1+t_1^2+t_2^2+\cdots+t_n^2>} \). Clearly, \(s(R_n) \leq n \).

- Let \(s(R_n) = m < n \). There are \(f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n] \) such that \(p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1 + t_1^2 + t_2^2 + \cdots + t_n^2) \) is identically \(-1\).

- For a point \(x \in S^{n-1} \), define \(q_j(x) \) as the imaginary part of \(f_j(w) \), where \(w \) is the complex vector \((ix_1, ix_2, \ldots, ix_n)\).

- \(q_j(-x) = -q_j(x) \), hence, \(q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x)) \) is an antipodal map \(S^{n-1} \rightarrow \mathbb{R}^m \).

- We claim that \(q(x) \neq 0 \) for every \(x \in S^{n-1} \), which contradicts the Borsuk-Ulam theorem.

- Indeed, we have \(p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1 \). But, this equality could not hold if the imaginary parts of the \(f_j(w) \) were all \(0 \).
LEVEL OF RINGS

- Set $R_n := \frac{\mathbb{R}[t_1, \ldots, t_n]}{<1+t_1^2+t_2^2+\cdots+t_n^2>}$. Clearly, $s(R_n) \leq n$.

- Let $s(R_n) = m < n$. There are $f_0, f_1, \ldots, f_m \in \mathbb{R}[t_1, \ldots, t_n]$ such that $p := f_1^2 + f_2^2 + \cdots + f_m^2 + f_0(1+t_1^2+t_2^2+\cdots+t_n^2)$ is identically -1.

- For a point $x \in S^{n-1}$, define $q_j(x)$ as the imaginary part of $f_j(w)$, where w is the complex vector $(ix_1, ix_2, \ldots, ix_n)$.

- $q_j(-x) = -q_j(x)$, hence, $q : x \rightarrow (q_1(x), q_2(x), \ldots, q_m(x))$ is an antipodal map $S^{n-1} \rightarrow \mathbb{R}^m$.

- We claim that $q(x) \neq 0$ for every $x \in S^{n-1}$, which contradicts the Borsuk-Ulam theorem.

- Indeed, we have $p := f_1^2 + f_2^2 + \cdots + f_m^2 = -1$. But, this equality could not hold if the imaginary parts of the $f_j(w)$ were all 0.
Necklace Theorem. Every (open) necklace with d kinds of stones can be divided between two thieves using no more than d cuts.
Necklace Theorem. Every (open) necklace with d kinds of stones can be divided between two thieves using no more than d cuts.
Necklace Theorem

- **Interval coloring.** Let $I = [0, 1]$ be the unit interval. Suppose that every point of I has a color i, $1 \leq i \leq k$, such that for each i the set of points colored i is measurable. Call such a coloring of I an interval coloring.

- **The Continuous Problem.** Given an interval coloring, a bisection of size r is a sequence of numbers $0 = y_0 < y_1 < \cdots < y_r < y_{r+1} = 1$ such that $\bigcup \{ [y_{i-1}, y_i] : i = 0 \mod 2 \}$ captures precisely half the measure of each color. Is there any bisection of size at most k for given interval coloring with k colors?
Necklace Theorem

- **Interval coloring.** Let $I = [0, 1]$ be the unit interval. Suppose that every point of I has a color i, $1 \leq i \leq k$, such that for each i the set of points colored i is measurable. Call such a coloring of I an interval coloring.

- **The Continuous Problem.** Given an interval coloring, a bisection of size r is a sequence of numbers $0 = y_o < y_1 < \cdots < y_r < y_{r+1} = 1$ such that $\bigcup\{[y_{i-1}, y_i] : i = 0 \text{ mod } 2\}$ captures precisely half the measure of each color. Is there any bisection of size at most k for given interval coloring with k colors?
Necklace Theorem

- **Interval coloring.** Let $I = [0, 1]$ be the unit interval. Suppose that every point of I has a color i, $1 \leq i \leq k$, such that for each i the set of points colored i is measurable. Call such a coloring of I an interval coloring.

- **The Continuous Problem.** Given an interval coloring, a bisection of size r is a sequence of numbers $0 = y_0 < y_1 < \cdots < y_r < y_{r+1} = 1$ such that $\bigcup\{[y_{i-1}, y_i] : i = 0 \text{ mod } 2\}$ captures precisely half the measure of each color. Is there any bisection of size at most k for given interval coloring with k colors?
Applications of Borsuk-Ulam Theorem

Necklace Theorem

NECKLACE THEOREM

- **Interval coloring.** Let $I = [0, 1]$ be the unit interval. Suppose that every point of I has a color i, $1 \leq i \leq k$, such that for each i the set of points colored i is measurable. Call such a coloring of I an interval coloring.

- **The Continuous Problem.** Given an interval coloring, a bisection of size r is a sequence of numbers $0 = y_0 < y_1 < \cdots < y_r < y_{r+1} = 1$ such that $\bigcup\{[y_{i-1}, y_i] : i \equiv 0 \pmod{2}\}$ captures precisely half the measure of each color. *Is there any bisection of size at most k for given interval coloring with k colors?*
Proof of The Continuous Problem

- Given an interval k-coloring of $[0, 1]$, define a function $f : S^k \to \mathbb{R}^k$ as follows.
 - If $x \in S^k$, then set $\alpha(x) := (z_0, z_1, \ldots, z_k)$ where $z_0 = 0$ and $z_j = \sum_{i=1}^{j} x_i^2$ for $j \geq 1$.
 - For $1 \leq j \leq k$, define $f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i)m_j(i)$, where $m_j(i)$ is the measure of the jth color in the segment $[z_{i-1}, z_i]$.

- Set $f(x) = (f_1(x), \ldots, f_k(x))$. Clearly $f : S^k \to \mathbb{R}^k$ and $f(-x) = -f(x)$. Hence, there exists $x \in S^k$ such that $f(x) = 0$.

- Put $Z = \bigcup \{[z_{i-1}, z_i] : \text{sign}(x_i) = +1\}$.
Proof of the Continuous Problem

- Given an interval k-coloring of $[0, 1]$, define a function $f : S^k \to \mathbb{R}^k$ as follows.
- If $x \in S^k$, then set $\alpha(x) := (z_0, z_1, \ldots, z_k)$ where $z_0 = 0$ and $z_j = \sum_{i=1}^{j} x_i^2$ for $j \geq 1$.
- For $1 \leq j \leq k$, define $f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i)m_j(i)$, where $m_j(i)$ is the measure of the jth color in the segment $[z_{i-1}, z_i]$.
- Set $f(x) = (f_1(x), \ldots, f_k(x))$. Clearly $f : S^k \to \mathbb{R}^k$ and $f(-x) = -f(x)$. Hence, there exists $x \in S^k$ such that $f(x) = 0$.
- Put $Z = \bigcup\{[z_{i-1}, z_i] : \text{sign}(x_i) = +1\}$.

Applications of Borsuk-Ulam Theorem
- Necklace Theorem
Proof of The Continuous Problem

- Given an interval k-coloring of $[0, 1]$, define a function $f : S^k \rightarrow \mathbb{R}^k$ as follows.
- If $x \in S^k$, then set $\alpha(x) := (z_0, z_1, \ldots, z_k)$ where $z_0 = 0$ and $z_j = \sum_{i=1}^{j} x_i^2$ for $j \geq 1$.
- For $1 \leq j \leq k$, define $f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i)m_j(i)$, where $m_j(i)$ is the measure of the jth color in the segment $[z_{i-1}, z_i]$.
- Set $f(x) = (f_1(x), \ldots, f_k(x))$. Clearly $f : S^k \rightarrow \mathbb{R}^k$ and $f(-x) = -f(x)$. Hence, there exists $x \in S^k$ such that $f(x) = 0$.
- Put $Z = \bigcup \{[z_{i-1}, z_i] : \text{sign}(x_i) = +1 \}$.
Proof of The Continuous Problem

Given an interval \(k \)-coloring of \([0, 1]\), define a function \(f : S^k \rightarrow \mathbb{R}^k \) as follows.

If \(x \in S^k \), then set \(\alpha(x) := (z_0, z_1, \ldots, z_k) \) where \(z_0 = 0 \) and \(z_j = \sum_{i=1}^{j} x_i^2 \) for \(j \geq 1 \).

For \(1 \leq j \leq k \), define \(f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i) m_j(i) \), where \(m_j(i) \) is the measure of the \(j \)th color in the segment \([z_{i-1}, z_i] \).

Set \(f(x) = (f_1(x), \ldots, f_k(x)) \). Clearly \(f : S^k \rightarrow \mathbb{R}^k \) and \(f(-x) = -f(x) \). Hence, there exists \(x \in S^k \) such that \(f(x) = 0 \).

Put \(Z = \bigcup \{[z_{i-1}, z_i] : \text{sign}(x_i) = +1 \} \).
Proof of the Continuous Problem

- Given an interval k-coloring of $[0, 1]$, define a function $f : S^k \to \mathbb{R}^k$ as follows.

- If $x \in S^k$, then set $\alpha(x) := (z_0, z_1, \ldots, z_k)$ where $z_0 = 0$ and $z_j = \sum_{i=1}^j x_i^2$ for $j \geq 1$.

- For $1 \leq j \leq k$, define $f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i) m_j(i)$, where $m_j(i)$ is the measure of the jth color in the segment $[z_{i-1}, z_i]$.

- Set $f(x) = (f_1(x), \ldots, f_k(x))$. Clearly $f : S^k \to \mathbb{R}^k$ and $f(-x) = -f(x)$. Hence, there exists $x \in S^k$ such that $f(x) = 0$.

- Put $Z = \cup \{[z_{i-1}, z_i] : \text{sign}(x_i) = +1\}$.

Applications of Borsuk-Ulam Theorem

Necklace Theorem
Proof of The Continuous Problem

- Given an interval k-coloring of $[0, 1]$, define a function $f : S^k \rightarrow \mathbb{R}^k$ as follows.
- If $x \in S^k$, then set $\alpha(x) := (z_0, z_1, \ldots, z_k)$ where $z_0 = 0$ and $z_j = \sum_{i=1}^{j} x_i^2$ for $j \geq 1$.
- For $1 \leq j \leq k$, define $f_j(x) = \sum_{i=1}^{k+1} \text{sign}(x_i)m_j(i)$, where $m_j(i)$ is the measure of the jth color in the segment $[z_{i-1}, z_i]$.
- Set $f(x) = (f_1(x), \ldots, f_k(x))$. Clearly $f : S^k \rightarrow \mathbb{R}^k$ and $f(-x) = -f(x)$. Hence, there exists $x \in S^k$ such that $f(x) = 0$.
- Put $Z = \bigcup \{[z_{i-1}, z_i] : \text{sign}(x_i) = +1\}$.
Hobby and Rice Theorem. Let $g_1, \ldots, g_k : [0, 1] \to \mathbb{R}$ be k continuously-integrable functions. Then there exist

$$0 = z_0 \leq z_1 \leq \cdots \leq z_k \leq z_{k+1} = 1$$

and

$$\delta_1, \ldots, \delta_{k+1} \in \{-1, +1\}$$

such that

$$\sum_{i=1}^{k+1} \delta_i \int_{z_{i-1}}^{z_i} g_j = 0 \quad \text{for all } 1 \leq j \leq k.$$
The Continuous Problem

- **Necklace Splitting Theorem.** If \(p \) thieves want to split a necklace with \(k \) kinds of beads such that each of them get \(\lfloor \frac{a_i}{p} \rfloor \) or \(\lceil \frac{a_i}{p} \rceil \) beads of \(i^{th} \) kind, then they can do so using at most \((p - 1)k\) cuts.

- **General Necklace Splitting Conjecture.** If \(p \) thieves want to split a necklace with \(k \) kinds of beads such that the \(j \)th thief gets \(a_i^{(j)} \) of the \(i \)th kind where \(a_i^{(j)} = \lfloor \frac{a_i}{p} \rfloor \) or \(a_i^{(j)} = \lceil \frac{a_i}{p} \rceil \) and \(\sum_j a_i^{(j)} = a_i \), then they can do so using at most \((p - 1)k\) cuts.
Applications of Borsuk-Ulam Theorem

Necklace Theorem

The Continuous Problem

- **Necklace Splitting Theorem.** If \(p \) thieves want to split a necklace with \(k \) kinds of beads such that each of them get \(\left\lfloor \frac{a_i}{p} \right\rfloor \) or \(\left\lceil \frac{a_i}{p} \right\rceil \) beads of \(i^{th} \)th kind, then they can do so using at most \((p - 1)k\) cuts.

- **General Necklace Splitting Conjecture.** If \(p \) thieves want to split a necklace with \(k \) kinds of beads such that the \(j \)th thief gets \(a_i^{(j)} \) of the \(i \)th kind where \(a_i^{(j)} = \left\lfloor \frac{a_i}{p} \right\rfloor \) or \(a_i^{(j)} = \left\lceil \frac{a_i}{p} \right\rceil \) and \(\sum_j a_i^{(j)} = a_i \), then they can do so using at most \((p - 1)k\) cuts.
Ham Sandwich Theorem

- Ham sandwich theorem for measures. Let $\mu_1, \mu_2, \ldots, \mu_d$ be finite Borel measures on \mathbb{R}^d such that every hyperplane has measure 0 for each of the μ_i (in the sequel, we refer to such measures as mass distributions). Then there exists a hyperplane h such that $\mu_i(h^+) = \frac{1}{2}\mu_i(\mathbb{R}^d)$ for $i = 1, 2, \ldots, d$ where h^+ denotes one of the half-spaces defined by h.
Sketch of Proof

Let $u = (u_0, u_1, \ldots, u_d)$ be a point of the sphere S^d.

If at least one of the components u_1, u_2, \ldots, u_d is nonzero, we assign to the point u the half-space

$$h^+(u) := \{(x_1, \ldots, x_d) \in \mathbb{R}^d | u_1 x_1 + \ldots + u_d x_d \leq u_0\}.$$

Define $f : S^d \rightarrow \mathbb{R}^d$ by $f_i(u) = \mu_i(h^+(u))$.

One check that $f : S^d \rightarrow \mathbb{R}^d$ is continuous, then $f(u) = f(-u)$ for some $u \in \mathbb{R}^d$.

In other words, $\mu_i(h^+(u)) = \frac{1}{2} \mu_i(\mathbb{R}^d)$.
Sketch of Proof

- Let $\mathbf{u} = (u_0, u_1, \ldots, u_d)$ be a point of the sphere S^d.
- If at least one of the components u_1, u_2, \ldots, u_d is nonzero, we assign to the point \mathbf{u} the half-space
 \[h^+(\mathbf{u}) := \{ (x_1, \ldots, x_d) \in \mathbb{R}^d | u_1 x_1 + \ldots + u_d x_d \leq u_0 \} \].
- Define $f : S^d \rightarrow \mathbb{R}^d$ by $f_i(\mathbf{u}) = \mu_i(h^+(\mathbf{u}))$.
- One check that $f : S^d \rightarrow \mathbb{R}^d$ is continuous, then
 $f(\mathbf{u}) = f(-\mathbf{u})$ for some $\mathbf{u} \in \mathbb{R}^d$.
- In other words, $\mu_i(h^+(\mathbf{u})) = \frac{1}{2} \mu_i(\mathbb{R}^d)$.
Sketch of Proof

- Let \(\mathbf{u} = (u_0, u_1, \ldots, u_d) \) be a point of the sphere \(S^d \).
- If at least one of the components \(u_1, u_2, \ldots, u_d \) is nonzero, we assign to the point \(\mathbf{u} \) the half-space
 \[
 h^+(\mathbf{u}) := \{(x_1, \ldots, x_d) \in \mathbb{R}^d | u_1 x_1 + \ldots + u_d x_d \leq u_0 \}.
 \]
- Define \(f : S^d \to \mathbb{R}^d \) by \(f_i(\mathbf{u}) = \mu_i(h^+(\mathbf{u})) \).
- One check that \(f : S^d \to \mathbb{R}^d \) is continuous, then
 \[
 f(\mathbf{u}) = f(-\mathbf{u}) \text{ for some } \mathbf{u} \in \mathbb{R}^d.
 \]
- In other words, \(\mu_i(h^+(\mathbf{u})) = \frac{1}{2} \mu_i(\mathbb{R}^d) \).
Applications of Borsuk-Ulam Theorem

Ham Sandwich Theorem

Sketch of Proof

- Let \(u = (u_0, u_1, \ldots, u_d) \) be a point of the sphere \(S^d \).
- If at least one of the components \(u_1, u_2, \ldots, u_d \) is nonzero, we assign to the point \(u \) the half-space
 \[
 h^+(u) := \{ (x_1, \ldots, x_d) \in \mathbb{R}^d | u_1 x_1 + \cdots + u_d x_d \leq u_0 \}.
 \]
- Define \(f : S^d \to \mathbb{R}^d \) by \(f_i(u) = \mu_i(h^+(u)) \).
- One check that \(f : S^d \to \mathbb{R}^d \) is continuous, then \(f(u) = f(-u) \) for some \(u \in \mathbb{R}^d \).
- In other words, \(\mu_i(h^+(u)) = \frac{1}{2} \mu_i(\mathbb{R}^d) \).
Sketch of Proof

- Let \(u = (u_0, u_1, \ldots, u_d) \) be a point of the sphere \(S^d \).
- If at least one of the components \(u_1, u_2, \ldots, u_d \) is nonzero, we assign to the point \(u \) the half-space

\[
h^+(u) := \{(x_1, \ldots, x_d) \in \mathbb{R}^d | u_1x_1 + \ldots + u_dx_d \leq u_0 \}.
\]

- Define \(f : S^d \to \mathbb{R}^d \) by \(f_i(u) = \mu_i(h^+(u)) \).
- One check that \(f : S^d \to \mathbb{R}^d \) is continuous, then \(f(u) = f(-u) \) for some \(u \in \mathbb{R}^d \).
- In other words, \(\mu_i(h^+(u)) = \frac{1}{2} \mu_i(\mathbb{R}^d) \).
Ham Sandwich Theorem

- **Ham sandwich theorem for point sets.** Let $A_1, A_2, \ldots, A_d \subset \mathbb{R}^d$ be finite point sets. Then there exists a hyperplane h that simultaneously bisects $A_1, A_2, \ldots, A_d \subset \mathbb{R}^d$.

![Diagram of Ham Sandwich Theorem](image-url)
Team-Splitting

Given a territory and such a collection of $2n$ explorers (e.g. two zoologists, two botanists, two archaeologists etc), there exists a way to divide the territory and the people into two teams of n explorers (one of each type) such that each explorer is satisfied with his/her territory.
Team-Splitting

▶ (Team-Splitting) Given a territory and such a collection of $2n$ explorers (e.g. two zoologists, two botanists, two archaeologists etc), there exists a way to divide the territory and the people into two teams of n explorers (one of each type) such that each explorer is satisfied with his/her territory.
Some applications

- (Consensus-Halving) Consider an object A, and n people whose preferences on A are modeled by continuous measure μ_1, \ldots, μ_n. Using at most n cuts by parallel planes, A may be divided into two portions A^+ and A^- such that each of n people thinks that A^+ and A^- are exactly equal, i.e., $\mu_i(A^+) = \mu_i(A^-)$.
Some applications

- (Consensus-Halving) Consider an object A, and n people whose preferences on A are modeled by continuous measure μ_1, \ldots, μ_n. Using at most n cuts by parallel planes, A may be divided into two portions A^+ and A^- such that each of n people thinks that A^+ and A^- are exactly equal, i.e., $\mu_i(A^+) = \mu_i(A^-)$.
Some applications

- (Consensus-Halving) Consider an object A, and n people whose preferences on A are modeled by continuous measure μ_1, \ldots, μ_n. Using at most n cuts by parallel planes, A may be divided into two portions A^+ and A^- such that each of n people thinks that A^+ and A^- are exactly equal, i.e., $\mu_i(A^+) = \mu_i(A^-)$.

![Diagram showing a cut-set represented by $(-0.2, +0.1, +0.2, -0.3, +0.2)$. The portion A^+ is the union of the white pieces; A^- is the union of the shaded pieces.](image-url)
References

Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler.

Forest W. Simmons and Francis Edward Sub, *consensus-halving via theorems of Borsuk-Ulam and Tucker.*

G. Simonyi, *Necklace bisection with one cut less than needed.*
Thank You!